
Custom Deep Residual Network for CIFAR-10

Aashna Kunkolienker, Akshita Upadhyay
NetIDs: ank8919, apu2005

NYU Tandon School of Engineering
Project Codebase: https://github.com/aashnakunk/Dl_Mini_project.git

Abstract

This project explores the task of image classification on
the CIFAR-10 dataset using a custom ResNet architec-
ture. The goal is to train a model to accurately clas-
sify images into one of ten classes: airplane, automo-
bile, bird, cat, deer, dog, frog, horse, ship, and truck.
The custom ResNet architecture includes data augmen-
tation techniques such as random horizontal flip, ran-
dom crop, color jitter, and random rotation to improve
the model’s generalization ability. The model is trained
using stochastic gradient descent with momentum and
weight decay, and the learning rate is adjusted using
a step scheduler. Experimental results demonstrate the
effectiveness of the proposed approach in achieving de-
cent classification accuracy on the test set.

ResNet Model Overview
ResNet Architecture
The ResNet architecture consists of multiple blocks of basic
blocks, each followed by downsampling layers to reduce the
spatial dimensions. The number of blocks and the number of
channels in each block can be adjusted based on the desired
network depth and complexity

The ResNet (Residual Network) architecture is a deep
learning model that addresses the vanishing gradient prob-
lem in deep neural networks. It introduces skip connections,
or shortcuts, that allow the gradient to flow more directly
through the network, enabling training of very deep net-
works.

The ResNet implemented here consists of several blocks
of convolutional layers, each followed by batch normaliza-
tion and ReLU activation. The blocks also include optional
dropout layers for regularization. Additionally, a Squeeze-
and-Excitation (SE) block is included, which adaptively re-
calibrates channel-wise feature responses by explicitly mod-
eling interdependencies between channels.

Custom ResNet Model Architecture
The custom ResNet model is designed to leverage the ben-
efits of residual connections and Squeeze-and-Excitation
(SE) blocks to improve feature learning and classification

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

performance. The architecture consists of several key com-
ponents:
• Initial Convolutional Layer: The model starts with a 3x3

convolutional layer with 32 filters applied to the input im-
age. This layer is followed by batch normalization and a
ReLU activation function to introduce non-linearity.

• Residual Blocks: The ResNet architecture uses residual
blocks to address the vanishing gradient problem. Each
residual block contains two 3x3 convolutional layers with
batch normalization and ReLU activation functions. A
shortcut connection is added to skip these layers if the
input and output dimensions are different.

• Squeeze-and-Excitation (SE) Block: Each residual
block includes an SE block, which consists of an adaptive
average pooling layer followed by two fully connected
layers with ReLU activation functions. This block recali-
brates channel-wise feature responses, enhancing impor-
tant features and suppressing irrelevant ones.

• Layer Stacks: The model includes four stacks of resid-
ual blocks. The number of output channels in each stack
increases progressively (32, 64, 128, and 256), while the
spatial dimensions are reduced through strides (1, 2, 2,
and 2, respectively). Each stack contains multiple resid-
ual blocks, with the first block adjusting the number of
channels and spatial dimensions if necessary.

• Global Average Pooling: After the final layer stack,
global average pooling is applied to reduce the spatial di-
mensions of the feature maps to a single value per chan-
nel. This step helps in reducing the computational com-
plexity and makes the model more robust to spatial trans-
lations of the input.

• Fully Connected Layer: Finally, a fully connected layer
is used to map the extracted features to the output classes.
The number of output units in this layer corresponds to
the number of classes in the classification task (e.g., 10
for CIFAR-10).

https://github.com/aashnakunk/Dl_Mini_project.git


The custom ResNet model architecture combines the
strengths of residual connections and SE blocks to achieve
state-of-the-art performance in image classification tasks.
The use of batch normalization and ReLU activation func-
tions throughout the network helps in stabilizing and accel-
erating the training process.

.

Training Overview
The training process for the custom ResNet model involves
several key components and techniques to optimize model
performance and stability.

• Model Initialization: The ResNet model is initialized
and moved to the specified device (e.g., GPU) for train-
ing.

• Optimizer Selection: Stochastic Gradient Descent
(SGD) with momentum is chosen as the optimizer.
SGD with momentum helps accelerate convergence and
smooth out the oscillations in the training process.

• Learning Rate Scheduler: A cosine annealing learning
rate scheduler is employed to adjust the learning rate dur-
ing training. This scheduler helps the model explore dif-
ferent areas of the loss landscape, potentially escaping lo-
cal minima.

• Loss Function: The CrossEntropyLoss function is used
as the loss criterion for training the model. This loss func-
tion is suitable for multi-class classification tasks.

• Gradient Clipping: Gradient clipping is applied to pre-
vent the gradients from becoming too large, which can
lead to unstable training and exploding gradients. This
technique helps stabilize the training process.

• Training Loop: The model is trained over multiple
epochs. In each epoch, the model is set to training mode,
and the training data is passed through the model. The op-
timizer is used to update the model parameters based on
the calculated loss.

• Validation: After each epoch, the model is evaluated on a
separate validation dataset to monitor its performance on
unseen data. This helps prevent overfitting and allows for
early stopping if the model starts to overfit.

• Best Model Saving: The best performing model
(based on validation accuracy) is saved to a file
(’best model.pth’) for future use.

• Monitoring and Reporting: The training loop reports
the training loss and accuracy after each epoch, as well
as the validation accuracy. This allows for monitoring the
model’s progress and performance throughout training.

Overall, these techniques and components work together
to train the custom ResNet model effectively, optimizing its
performance and stability while preventing overfitting.

Methodology
Our approach to designing and training the models involved
several key decisions and techniques aimed at improving
performance and efficiency. Initially, we experimented with
different optimizers and settled on Stochastic Gradient De-
scent (SGD) instead of Adam due to its better convergence
properties for our task.

The baseline model we started with had approximately 0.6
million parameters and achieved an accuracy of 88% on the
test dataset. However, we observed that the model was not
capturing complex features effectively. To address this, we
introduced an additional layer to our ResNet architecture,
specifically adding the following layer: self.layer4 =
self.make layer(256, 3, stride=2), which in-
creased the number of parameters to 4 million. This mod-
ification significantly improved the model’s performance,
leading to a notable increase in accuracy.

In addition to architectural changes, we incorporated sev-
eral training techniques to enhance model stability and con-
vergence. One such technique was gradient clipping, which
helps prevent the exploding gradient problem by limiting
the magnitude of gradients during backpropagation. Gradi-
ent clipping proved to be particularly effective in stabilizing
the training process and preventing divergence.

During the training phase, we initially experimented with
training for 250 epochs. However, we observed that the train
and validation accuracy plateaued after a certain number of
epochs, indicating that the model had converged. As a result,
we decided to reduce the number of epochs to 200, which
provided a good balance between training time and perfor-
mance.

Overall, our methodology involved a combination of ar-
chitectural adjustments, optimizer selection, and training
techniques aimed at improving the performance and effi-
ciency of our models. These decisions were guided by exper-
imentation and iterative refinement, leading to a final model
that achieved our desired level of accuracy and stability.

Results
This custom resnet model uses 4398890 parameters.

The training process was conducted over 200 epochs, and
the model achieved a peak validation accuracy of 91.27%
at the end of the training. The training accuracy steadily in-
creased from 38.53% in the first epoch to 99.39% in the fi-
nal epoch. Similarly, the validation accuracy improved from
47.00% to 91.27% over the same period.

The training and validation losses decreased consistently
throughout the training process, indicating that the model



was learning effectively. The training loss decreased from
1.6460 in the first epoch to 0.0190 in the final epoch.

The final test accuracy was 90.74

Overall, the results demonstrate that the ResNet model
was able to effectively learn from the training data and gen-
eralize well to unseen data, achieving a high level of accu-
racy on the CIFAR-10 dataset.

Additionally, the model achieved a test accuracy of
90.74%, demonstrating its ability to generalize well to un-
seen data beyond the training and validation sets.

Figure 1: Training and Test loss

CITATIONS
• https://github.com/navoday01/
ResNet5M-CIFAR10

• Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
”Deep Residual Learning for Image Recognition.”

• https://towardsdatascience.com/
understanding-and-visualizing-resnets-442284831be8

• https://chat.openai.com/

https://github.com/navoday01/ResNet5M-CIFAR10
https://github.com/navoday01/ResNet5M-CIFAR10
https://towardsdatascience.com/understanding-and-visualizing-resnets-442284831be8
https://towardsdatascience.com/understanding-and-visualizing-resnets-442284831be8
https://chat.openai.com/

	ResNet Model Overview
	ResNet Architecture

	Custom ResNet Model Architecture
	Training Overview
	Methodology
	Results
	CITATIONS

