
θ(1) TIME COMPLEXITY PARALLEL LOCAL 
NEIGHBOURHOOD DIFFERENCE PATTERN 
FEATURE EXTRACTOR ON A GRAPHICAL 

PROCESSING UNIT 

 

Pranshul Goyal ​
Manipal Institute of Technology, 

Manipal Academy of Higher Education,​
Manipal, Karnataka State, India, 

PIN-576104​
pranshul20162002@gmail.com 

Aashna Nitin Kunkolienker​
Manipal Institute of Technology, 

Manipal Academy of Higher Education,​
Manipal, Karnataka State, India, 

PIN-576104​
aashnakunk@gmail.com 

Ashwath Rao B​
Manipal Institute of Technology, 

Manipal Academy of Higher Education,​
Manipal, Karnataka State, India, 

PIN-576104​
ashwath.rao@manipal.edu 

Abstract—Local Neighbourhood Difference Pattern 
(LNDP) is a fairly new feature extraction method which has 
found its application in the field of facial recognition and 
medicine, such as building an automatic epilepsy detection 
framework. In such cases, the time taken to execute these tasks 
is very precious. Hence, to speed up the process, we have 
proposed a parallel approach involving the graphical 
processing unit. Through this work, we provide a ⍬(1) time 
complexity extraction algorithm for calculating the Local 
Neighbourhood Difference Pattern Features of an image.  We 
tested this implementation on medical images from the LISS 
database. 
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I.​ INTRODUCTION 
Texture is one of the predominant characteristics used in 

image analysis. Local Binary Pattern is a pilot local texture 
descriptor with considerably high efficacy. The initial 
approach for LBP was sequential. It took a lot of time to 
compute pixel values. Since the pixel value calculations are 
independent of each other, a parallel approach is much faster 
and efficient for this task. Many parallel approaches have 
been proposed for LBP algorithm. Some use the OpenCl 

framework, while others utilize Nvidia’s CUDA framework. 
Compute Unifies Device Architecture (CUDA) is a parallel 

computing platform developed by Nvidia for general 
computing on its own graphical processing units. 

Fig. 1 CUDA program structure 

Nowadays, many software applications operate on 
datasets which contain real-world phenomena. Data 
parallelism enables us to run these applications in a very 
efficient manner, since it ensures that multiple threads 
operate on different segments of the input data, thereby 
decreasing the end to end execution time. CUDA programs 
comprise of a host and multiple devices. The CPU is the 
host, whereas the GPUs are the devices. The chunk of code 
corresponding to the host is compiled with its standard C 
compiler. On the other hand, the GPU’s code is compiled by 
the NVDIA CUDA compiler and executed on a GPU 
device. 

The execution of a CUDA program starts with the host 
and then, a “kernel” function is called. This function is 
executed by a large number of threads on the device. A 
group of threads form a block. A group of blocks form a 
grid. Threads in a block run in parallel, each thread 
performing the same task.  

 

 

 

 

 

 

 

 

 

 

Fig2. CUDA thread organisation 

In feature extraction algorithms, operations on each pixel 
or a group of pixels are carried out by a thread, and all 
threads run in parallel. Upon the completion of operations 

 



on each pixel of the input image, the final computed result 
corresponding to every pixel is sent back to the host. 

“Local neighbourhood difference pattern” is a recently 
developed feature extraction method proposed by M. Verma 
and B. Raman [1]. Image feature extraction is used by 
content based image retrieval in order to search for images 
similar to an input image. LNDP extracts local features 
based on neighbourhood pixel differences and forms a 
binary pattern to represent each pixel in the image. 

For each pixel we select a 3x3 block of pixels 
surrounding the pixel. Each neighbouring pixel is then 
compared to two most adjacent and appropriate pixels. We 
obtain two values for each of the neighbouring pixels using 
these two comparisons. The formulae for the same is 
mentioned below: 

 

kn1 = I8 − In, kn2 = In+1 − In, f or n = 1 (1) 

kn1 = In−1 − In, kn2 = In+1 − In, ∀ n = 2, 3, .., 7 (2) 

kn1 = In−1 − In, kn2 = I1 − In, f or n = 8 (4) 

 

Then, we obtain the final binary value for each pixel by 
applying XNOR operation on those values  

​ F3(k1n,k2n)=  1, if k1n >= 0 & k2n >= 0      (5) 

​ ​ 1, if k1n <0 & k2n <0 

​ ​ 0, if k1n >=0 & k2n <0 

​ ​ 0, if k1n < 0  & k2n >=0 

 

We get eight binary codes each having 1 or 0 and the 
code is converted into a byte by multiplying positional 
weights starting from 1 to 128. By this step, for each 
non-border pixel in an image we get a byte. This step is 
depicted in detail in figure 3.  

Fig. 3 LNDP calculation for center pixel (a) pixel index (b) 
example of pattern calculation for a window  (c) 
computation of binary values (d) weights in their respective 
positions (e) weights multiplied by the corresponding pixel 
values 

 

 

Fig. 4 LBP calculation (a) a 3×3 window (b) comparing 
the neighbouring pixel values with the centre pixel and 
computing the difference (c) Assigning binary values 
according to the threshold (d) weights in their respective 
positions (e) weights multiplied by the corresponding pixel 
values                                              LNDP has been proposed 
to be used in association with the LBP feature extraction 
algorithm. Other methods are outperformed by this one, in 
terms of accuracy. Feature extraction is widely used in 
various fields.  LBP is used in face identification [2 3 4], 
object recognition [5]. It has found diverse applications in 
the medical field too, like Multi-level Fusion in Ultrasound 
for Cancer Detection Multi-Level Fusion in Ultrasound for 
Cancer Detection [6], Age classification [7]. Another feature 
extraction method proposed for medical datasets is the 
parallel local Tri directional feature extraction method. [8] 
and the Local diagonal extrema pattern. [9] 

LNDP is a relatively newer algorithm, and as of now, 
has found its usage in classifying epileptic EEG signals 
(building an automatic epilepsy detection framework) [10] 
and Recognition of Parkinson’s Disease [11] .There has 
been no parallel implementation of the LNDP algorithm as 
yet. Through this paper, we aim to present a ⍬(1) time 
complexity feature extraction method. We tested this 
algorithm on medical images from the publicly available 
LISS database.  

The outline of the paper is as follows. Under section 2, 
we have thrown light on the methodology used by us to 
implement the algorithm. Under section 3, the setup used for 
our experiment and the observed results are discussed. In 
section 4, we have mentioned the conclusion and future 
scope of this work. 

II.​ METHODOLOGY 
 CPUs are designed with a lesser number of processor 

cores whose clock speeds are higher, thus allowing a good 
performance on single threaded operations. But when we 
come to multi-threaded performance GPU outperforms a 
CPU due to its sheer number of processing elements. The 
major work in computing the LNDP values for pixels is 
mathematical computation which can be done in parallel as 
LNDP value of one pixel does not affect the LNDP value of 
another pixel. By executing massive number of threads at 
the same time all the pixel values can be computed at the 
same time given the GPU allows that many threads to 
execute at the same time. There have not been major 
changes in computing LNDP values over the years. So, in 
this work we present a method which will utilize the large 
memory present on the GPU to reduce the computational 
time complexity. 

We propose a novel method where the LNDP is 
computed on the whole image at once. We create as many 
threads as the non-border elements in the image. If we 
assume the image size to be h*w pixels, then the feature 
vector size will be (h-2) *(w-2). 



For the testing purpose we used medical images whose 
maximum resolution was 2048x2048 which is 
approximately 4 Megabytes. As evident from Table 1 and 
Table 2 modern GPUs can easily handle this data at the 
same time. 

III.​ EXPERIMENTAL SETUP AND RESULTS 
The dataset we used was obtained from the publicly 

available LISS database. In order to process the input 
medical images (DICOM), we used the DTMCK library. 

To execute the parallel code, we’ve used a laptop with 
intel iCore 7 8th Gen with NVIDIA RTX2060. The total 
memory available to the GPU is 6Gb @ 1750 MHz The 
maximum block size is (1024,1024,64). 

Parallelisation of the code is done using CUDA 
architecture, instead of OpenCL, owing to CUDA’s better 
performance. 

We implemented the code with various block sizes, and 
the optimum performance was achieved when the block size 
was equal to the image size (only non-border elements), i.e., 
one thread computes the value for one pixel, and all threads 
run in parallel at the same time. 

A.​ Results 
In Table 4, the results of the sequential LNDP 

implementation are shown. As the input image size 
increases, execution time increases. There is a 3.3-fold 
increase as image size goes from 256 x 256 to 512 x 512 
and a 12-fold increase as image size goes from 256 x 256 to 
1024 x 1024 (a 16 fold increase in pixels). 

Table 4. LNDP sequential execution time in milli 
seconds 

Image Size LNDP execution 
time (ms) 

End to end 
execution time 
(ms) 

256X256 11.384256 23.866528 

512X512 64.319069 79.257828 

1024X1024 266.733582 284.094147 

​ ​  

We ran the parallel code on the same medical images, to 
get the following output. (Shown in Table 5) 

​ Table 5. LNDP parallel execution 

Imag
e 
size 

Thread 
block 
size 

Memory 
loading 
time (ms) 

Kernel 
execution 
time (ms) 

Memory 
output 
time 
(ms) 

End-end 
execution 
time (ms) 

256 x 
256 

16 x 16 0.818688 0.840320 0.19033
6 16.1186 

32 x 32 0.863392 1.103552 0.13347
2 15.8446 

256 x 
256 

0.629248 0.002560 0.17676
8 14.1384 

512 x 
512 

 

 

16 x 16 1.25738 2.820896 0.61260
8 21.4608 

     

32 x 32 0.948768 3.198976 1.0953 20.6165 

512 x 
512 

1.19654 0.002016 0.4632 18.5753 

1024 
x 
1024 

16 x 16 3.13901 13.47452
8 2.9953 42.3315 

32 x 32 1.49814 13.40345
6 3.10026 38.9026 

1024 x 
1024 

0.979968 0.004256 1.68659 20.5574 

 

In our parallel implementation, as the image size 
increases four-fold from 256 x 256 to 512 x 512, kernel 
execution time increases by almost 4 times. As the image 
size increases 16-fold from 256 x 256 to 1024 x 1024, the 
kernel execution time increases 16-fold. Hence, we can 
come to a conclusion that when we use the GPU, parallel 
kernel execution time increases linearly to the increase in 
the number of pixels. 

 

Table 6. Speedup of LNDP algorithm with respect to kernel 
execution time 

Image size Thread block size Speedup 

256 x 256 

16 x 16 13.5475248 

32 x 32 10.3160123 

256 x 256 4446.975 

512 x 512 

16 x 16 22.8009359 

32 x 32 20.106143 

512 x 512 31904.3001 

1024 x 1024 

16 x 16 19.7953934 

32 x 32 19.9003587 

1024 x 1024 62672.3642 



 

 

From Table 6, we can infer that the algorithm performs 
best when the image size and thread block size are the same. 
In other words, one thread will work on one pixel, and all 
the threads will run together in parallel. 

We can observe a ~4500, ~32000, ~63000 speedup when 
the aforementioned condition is satisfied. Maximum 
performance (highest speedup) is achieved when the image 
size as well as thread block size is 1024 x 1024. 

The time complexity for our LNDP algorithm is ⍬(1), 
because each thread works on each non border element of 
our input image simultaneously. 

IV.​ CONCLUSION AND FUTURE SCOPE 
We incorporated parallel programming into the LNDP 

algorithm in order to reduce our code execution time, 
thereby enabling real-time applications for feature 
extraction to be faster. Today, image feature extraction finds 
its application in numerous domains. The high throughput of 
the GPU is evident as we got the parallel code to execute a 
maximum speed-up of ~63000. A lesser time complexity is 
obtained, thus making such parallel algorithms highly 
efficient. There is a huge future scope for this parallel 
algorithm, since the faster a feature extraction algorithm 
executes, the better it is. For example, if our algorithm is 
used in cancer detection using LNDP features, we’ll be able 
to obtain results faster on a larger dataset, hence speeding up 
the detection process. 
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