0(1) TIME COMPLEXITY PARALLEL LOCAL

NEIGHBOURHOOD DIFFERENCE PATTERN

FEATURE EXTRACTOR ON A GRAPHICAL
PROCESSING UNIT

Pranshul Goyal
Manipal Institute of Technology,

Manipal Academy of Higher Education,
Manipal, Karnataka State, India,
PIN-576104
pranshul20162002@gmail.com

Abstract—Local Neighbourhood Difference Pattern
(LNDP) is a fairly new feature extraction method which has
found its application in the field of facial recognition and
medicine, such as building an automatic epilepsy detection
framework. In such cases, the time taken to execute these tasks
is very precious. Hence, to speed up the process, we have
proposed a parallel approach involving the graphical
processing unit. Through this work, we provide a 8(1) time
complexity extraction algorithm for calculating the Local
Neighbourhood Difference Pattern Features of an image. We
tested this implementation on medical images from the LISS
database.

Keywords—Local Neighbourhood Difference Pattern, Parallel
Programming, Graphical Processing Unit, CUDA, Medical image
processing

I. INTRODUCTION

Texture is one of the predominant characteristics used in
image analysis. Local Binary Pattern is a pilot local texture
descriptor with considerably high efficacy. The initial
approach for LBP was sequential. It took a lot of time to
compute pixel values. Since the pixel value calculations are
independent of each other, a parallel approach is much faster
and efficient for this task. Many parallel approaches have
been proposed for LBP algorithm. Some use the OpenCl

Integrated C programs with CUDA extensions

\ 4

NVCC Compiler

‘ Device Code (PTX)

Device just-in-time
compiler

Host Code ‘

Host C preprocessor,
compiler/ linker

framework, while others utilize Nvidia’s CUDA framework.
Compute Unifies Device Architecture (CUDA) is a parallel

Aashna Nitin Kunkolienker
Manipal Institute of Technology,

Manipal Academy of Higher Education,
Manipal, Karnataka State, India,
PIN-576104
aashnakunk@gmail.com

Ashwath Rao B
Manipal Institute of Technology,

Manipal Academy of Higher Education,
Manipal, Karnataka State, India,
PIN-576104
ashwath.rao@manipal.edu

computing platform developed by Nvidia for general
computing on its own graphical processing units.

Fig. 1 CUDA program structure

Nowadays, many software applications operate on
datasets which contain real-world phenomena. Data
parallelism enables us to run these applications in a very
efficient manner, since it ensures that multiple threads
operate on different segments of the input data, thereby
decreasing the end to end execution time. CUDA programs
comprise of a host and multiple devices. The CPU is the
host, whereas the GPUs are the devices. The chunk of code
corresponding to the host is compiled with its standard C
compiler. On the other hand, the GPU’s code is compiled by
the NVDIA CUDA compiler and executed on a GPU
device.

The execution of a CUDA program starts with the host
and then, a “kernel” function is called. This function is
executed by a large number of threads on the device. A
group of threads form a block. A group of blocks form a
grid. Threads in a block run in parallel, each thread
performing the same task.

Fig2. CUDA thread organisation

In feature extraction algorithms, operations on each pixel
or a group of pixels are carried out by a thread, and all
threads run in parallel. Upon the completion of operations

on each pixel of the input image, the final computed result
corresponding to every pixel is sent back to the host.

“Local neighbourhood difference pattern” is a recently
developed feature extraction method proposed by M. Verma
and B. Raman [1]. Image feature extraction is used by
content based image retrieval in order to search for images
similar to an input image. LNDP extracts local features
based on neighbourhood pixel differences and forms a
binary pattern to represent each pixel in the image.

For each pixel we select a 3x3 block of pixels
surrounding the pixel. Each neighbouring pixel is then
compared to two most adjacent and appropriate pixels. We
obtain two values for each of the neighbouring pixels using
these two comparisons. The formulae for the same is
mentioned below:

knl =18 —In, kn2 =In+1 —In, forn=1 (1)
knl=In-1-In,kn2=In+1-In,Vn=2,3, ..,
knl =In—-1—-1In,kn2 =11 —In, forn =8 (4)

7(2)

Then, we obtain the final binary value for each pixel by
applying XNOR operation on those values

F3(klnk2n)= 1, ifkln>=0&k2n>=0 (5)
1, ifk1n <0 & k2n <0
0, if kIn>=0 & k2n <0
0,ifkln<0 & k2n>=0

We get eight binary codes each having 1 or 0 and the
code is converted into a byte by multiplying positional
weights starting from 1 to 128. By this step, for each
non-border pixel in an image we get a byte. This step is
depicted in detail in figure 3.

V] v

|| L 20513 1|1]o0 8 14|2 410
L[| 8 2 0 1 16 1 3 B
wjnln] el lgty el 32[eaf12s] [32] 64128}
(a) (b) (c) (d) (e)
- Ea— — —=
I,r 2 0| -3 01 | 1 3
1: aY \
Sv
11— 10 =0 00 —=1 11—l
() (g) (h) (i)
1,6
I
1 ?'l ST
v 1|8 sli]s ot
100 001 11—+ 00 —1
@i (k)] (m)
Pattern 10110111

Pattern value 237

Fig. 3 LNDP calculation for center pixel (a) pixel index (b)
example of pattern calculation for a window (c)
computation of binary values (d) weights in their respective
positions (e) weights multiplied by the corresponding pixel
values

23 [s]0 |i ofelo]
8 2 3.1 16. 0
91|17 | |32|64 128 32|o 128|

(a) (e)

Fig. 4 LBP calculation (a) a 3x3 window (b) comparing
the neighbouring pixel values with the centre pixel and
computing the difference (c) Assigning binary values
according to the threshold (d) weights in their respective
positions (e) weights multiplied by the corresponding pixel
values LNDP has been proposed
to be used in association with the LBP feature extraction
algorithm. Other methods are outperformed by this one, in
terms of accuracy. Feature extraction is widely used in
various fields. LBP is used in face identification [2 3 4],
object recognition [5]. It has found diverse applications in
the medical field too, like Multi-level Fusion in Ultrasound
for Cancer Detection Multi-Level Fusion in Ultrasound for
Cancer Detection [6], Age classification [7]. Another feature
extraction method proposed for medical datasets is the
parallel local Tri directional feature extraction method. [8]
and the Local diagonal extrema pattern. [9]

LNDP is a relatively newer algorithm, and as of now,
has found its usage in classifying epileptic EEG signals
(building an automatic epilepsy detection framework) [10]
and Recognition of Parkinson’s Disease [11] .There has
been no parallel implementation of the LNDP algorithm as
yet. Through this paper, we aim to present a €(1) time
complexity feature extraction method. We tested this
algorithm on medical images from the publicly available
LISS database.

The outline of the paper is as follows. Under section 2,
we have thrown light on the methodology used by us to
implement the algorithm. Under section 3, the setup used for
our experiment and the observed results are discussed. In
section 4, we have mentioned the conclusion and future
scope of this work.

IL METHODOLOGY

CPUs are designed with a lesser number of processor
cores whose clock speeds are higher, thus allowing a good
performance on single threaded operations. But when we
come to multi-threaded performance GPU outperforms a
CPU due to its sheer number of processing elements. The
major work in computing the LNDP values for pixels is
mathematical computation which can be done in parallel as
LNDP value of one pixel does not affect the LNDP value of
another pixel. By executing massive number of threads at
the same time all the pixel values can be computed at the
same time given the GPU allows that many threads to
execute at the same time. There have not been major
changes in computing LNDP values over the years. So, in
this work we present a method which will utilize the large
memory present on the GPU to reduce the computational
time complexity.

We propose a novel method where the LNDP is
computed on the whole image at once. We create as many
threads as the non-border elements in the image. If we
assume the image size to be h*w pixels, then the feature
vector size will be (h-2) *(w-2).

For the testing purpose we used medical images whose
maximum resolution was 2048x2048 which is
approximately 4 Megabytes. As evident from Table 1 and
Table 2 modern GPUs can easily handle this data at the
same time.

I11. EXPERIMENTAL SETUP AND RESULTS

The dataset we used was obtained from the publicly
available LISS database. In order to process the input
medical images (DICOM), we used the DTMCK library.

To execute the parallel code, we’ve used a laptop with
intel iCore 7 8th Gen with NVIDIA RTX2060. The total
memory available to the GPU is 6Gb @ 1750 MHz The
maximum block size is (1024,1024,64).

Parallelisation of the code is done using CUDA
architecture, instead of OpenCL, owing to CUDA’s better
performance.

We implemented the code with various block sizes, and
the optimum performance was achieved when the block size
was equal to the image size (only non-border elements), i.e.,
one thread computes the value for one pixel, and all threads
run in parallel at the same time.

A. Results

In Table 4, the results of the sequential LNDP
implementation are shown. As the input image size
increases, execution time increases. There is a 3.3-fold
increase as image size goes from 256 x 256 to 512 x 512
and a 12-fold increase as image size goes from 256 x 256 to
1024 x 1024 (a 16 fold increase in pixels).

Table 4. LNDP sequential execution time in milli
seconds

256 x 0.17676
556 0.629248]0.002560 g 14.1384
16 x 16| 1.257382.820896 0'61262 21.4608
512 X
512
32 x 3210.948768/3.198976| 1.0953] 20.6165
g}; X 1.19654/0.002016] 0.4632| 18.5753
16 x 16| 3.13901 13'47452 2.9953| 42.3315
1024
X 32 x 32| 1.49814 13'40342 3.10026| 38.9026
1024
1823)(0.979968] 0.004256| 1.68659] 20.5574

In our parallel implementation, as the image size
increases four-fold from 256 x 256 to 512 x 512, kernel
execution time increases by almost 4 times. As the image
size increases 16-fold from 256 x 256 to 1024 x 1024, the
kernel execution time increases 16-fold. Hence, we can
come to a conclusion that when we use the GPU, parallel

- - kernel execution time increases linearly to the increase in
Image Size LNDP execution | End to gnd the number of pixels.
time (ms) execution time
(ms)
256X256 11.384256 23.866528 Table 6. Speedup of LNDP algorithm with respect to kernel
execution time
512X512 64.319069 79.257828
1024X1024 266.733582 284.094147 Image size [Thread block size [Speedup
16 x 16 13.5475248
We ran the parallel code on the same medical images, to
get the following output. (Shown in Table 5) 256 x 256 32 x 32 10.3160123
Table 5. LNDP parallel execution
v 256 x 256 4446.975
Imag [Thread |[Memory |Kernel ouetmLiry End-end
e block [loading [execution tims execution 16 x 16 22.8009359
size [size time (ms) |time (ms) (ms) time (ms)
512 x 512 32 x 32 20.106143
16 x 1610.818688| 0.840320, 0'19032 16.1186 512 x 512 31904.3001
256 X
256 0.13347 16 x 16 19.7953934
32 x 32|0.8633921.103552 9 15.8446
1024 x 1024 |32 x 32 19.9003587
1024 x 1024 62672.3642

From Table 6, we can infer that the algorithm performs
best when the image size and thread block size are the same.
In other words, one thread will work on one pixel, and all
the threads will run together in parallel.

We can observe a ~4500, ~32000, ~63000 speedup when
the aforementioned condition is satisfied. Maximum
performance (highest speedup) is achieved when the image
size as well as thread block size is 1024 x 1024.

The time complexity for our LNDP algorithm is 8(1),
because each thread works on each non border element of
our input image simultaneously.

IV. CONCLUSION AND FUTURE SCOPE

We incorporated parallel programming into the LNDP
algorithm in order to reduce our code execution time,
thereby enabling real-time applications for feature
extraction to be faster. Today, image feature extraction finds
its application in numerous domains. The high throughput of
the GPU is evident as we got the parallel code to execute a
maximum speed-up of ~63000. A lesser time complexity is
obtained, thus making such parallel algorithms highly
efficient. There is a huge future scope for this parallel
algorithm, since the faster a feature extraction algorithm
executes, the better it is. For example, if our algorithm is
used in cancer detection using LNDP features, we’ll be able
to obtain results faster on a larger dataset, hence speeding up
the detection process.

REFERENCES

[1] Verma, M., Raman, B. Local neighborhood difference pattern: A new
feature descriptor for natural and texture image retrieval. Multimed
Tools A(S)pl 77, 11843-11866 (2018).
https://doi.org/10.1007/s11042-017-4834-3

[2] Karanwal, Shekhar, and Manoj Diwakar. "Neighborhood and center
difference-based-LBP for face recognition." Pattern Analysis and
Applications 24.2 (2021): 741-761.

[3] Jin, Hongliang, et al. "Face detection using improved LBP under
Bayesian framework." Third International Conference on Image and
Graphics (ICIG'04). IEEE, 2004.

[4] Ren, Jianfeng, Xudong Jiang, and Junsong Yuan. "Quantized fuzzy
LBP for face recognition." 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015.

[5] A.Satpathy, X. Jiang and H. Erigé"LBP-Based Edge-Texture Features
for Object Recognition," in IEEE Transactions on Image Processing,
vol. 23, no. 5, pp. 1953-1964, May 2014, doi:
10.1109/TiP.2014.2310123.

[6] Zeebaree, D. Qader, et al. "Multi-level fusion in ultrasound for cancer
detection based on uniform LBP features." Computers, Materials &
Continua 66.3 (2021): 3363-3382.

[71 A. Gunay and V. V. Nabiyev, "Automatic age classification with
LBP," 2008 23rd International Symposium on Computer and
Information Sciences, 2008, pp- 1-4, doi:
10.1109/1SCIS.2008.4717926.

[8] Rao, B.A., Kini, G.N., Aithal, PK., Vaishnavi, K., Kamath, U.N.
§2022). Parallel Local Tridirectional Feature Extraction Using GPU.
n: Dua, M., Jain, AK., Yadav, A., Kumar, N., Siarry, P. (eds)
Proceedings of the International Conference on Paradigms of
Communication, Computing and Data Sciences. Algorithms for
Intelligent S_;fstems. Sprin%er, Singapore.
https://doi.org/10.1007/978-981-16-5747-4 3

[9] Rao, B.A., Kini, N.G. (2028. Parallelization of Local Diagonal
Extrema Pattern Using a raghlcal Processml%, Unit and Its
Optimization. In: Singh, VK., Sergeyev, Y.D., Fischer, A. (eds)
Recent Trends_in Mathematical Modeling and High Performance
Computing. Trends in Mathematics. Birkhduser, Cham.
https://doiorg/10.1007/978-3-030-68281-1 20

[10] Abeg Kumar Jaiswal, Haider Banka,Local pattern transformation
based feature extraction techniques for classification of epileptic EEG
signals,Biomedical ~ Signal ~ Processing and Control,Volume
34,2017, Pages 81-92,ISSN
1746-8094,https://doi.org/10.1016/j.bspc.2017.01.005.

[11] Priya, S. Jeba, et al. "Local pattern transformation based feature

extraction for recognition of Parkinson’s disease based on gait
signals." Diagnostics 11.8 (2021): 1395.

[12] W. Chen and W. Li, "Definition and Usage of Texture Feature for
Biological Sequence," in IEEE/ACM Transactions on Computational
Biology and Bioinformatics, vol. 18, no. 2, Ep. 773-776, 1

March-April 2021, doi: 10.1109/TCBB.2020.2973084.

https://doi.org/10.1007/978-981-16-5747-4_37
https://doi.org/10.1007/978-3-030-68281-1_20

	I.​INTRODUCTION
	II.​METHODOLOGY
	III.​EXPERIMENTAL SETUP AND RESULTS
	A.​Results

	IV.​CONCLUSION AND FUTURE SCOPE
	REFERENCES

