Predictive QoS Management in Vehicular Networks
Using Advanced Machine Learning Techniques

Aashna Kunkolienker
Department of Computer Engineering
New York University
Email: ank8919@nyu.edu

Abstract—This report addresses the challenges of predicting
Quality of Service (QoS) in vehicular networks, where dynamic
environments, high mobility, and variable communication con-
ditions complicate reliable performance. Traditional methods,
such as signal propagation models and network simulations, are
often effective in static scenarios but might lack adaptability
in real-time, dynamic vehicular contexts. To tackle these limita-
tions, we leverage advanced machine learning models like tree-
based algorithms, to predict key QoS metrics such as uplink
throughput using features like Signal-to-Interference-plus-Noise
Ratio (SINR), and Reference Signal Received Power (RSRP).
Using a dataset collected in a real-world vehicular environment,
our implementation showcases significant results. Practical use
cases, such as efficient route planning, coordinated fleet vehicle
operations, and optimized communication strategies, highlight
the potential applications of this work. Finally, we propose future
directions, including the use of transfer learning to adapt these
models to diverse global environments, with the ultimate goal of
creating scalable and robust QoS prediction systems.

I. INTRODUCTION

The rapid evolution of wireless communication networks,
particularly with the advent of 5G, has introduced new chal-
lenges in maintaining and enhancing Quality of Service (QoS)
for end-users. Efficient network management requires predict-
ing network conditions to dynamically optimize resource allo-
cation and maintain consistent service levels. Among emerg-
ing applications, vehicular communication systems, especially
Vehicle-to-Everything (V2X) communications, stand to benefit
significantly from these advancements due to their stringent
QoS demands. V2X involves communication between vehicles
and infrastructure, other vehicles, and networks, requiring
reliable and high-throughput connectivity to support efficient
coordination and data exchange.

This report explores the challenge of predicting QoS in
a vehicular communication scenario within the context of
5G networks. Using machine learning (ML) techniques, we
focus on predicting downlink throughput, a key QoS metric,
to enable efficient route planning and coordination among
vehicles in a fleet. Our study leverages the Berlin V2X dataset,
which includes LTE signal metrics, GPS data, and additional
contextual information collected from primary and secondary
cells of two LTE network operators in an urban environment.
We aim to demonstrate how Al-driven models can provide
accurate and adaptive solutions for QoS prediction, offering
practical advantages over traditional methods.

II. TRADITIONAL VS AI-BASED METHODS FOR QOS
PREDICTION

Traditional methods for QoS prediction, including signal
propagation models like Okumura-Hata and FSPL, network
simulations using tools such as NS-3 and OMNeT++, and
time-series forecasting techniques like Kalman filters, rely
heavily on predefined parameters and assumptions. These
approaches are effective in controlled environments but often
lack adaptability to the dynamic and non-linear nature of
vehicular networks.

In contrast, machine learning (ML) offers data-driven solu-
tions that can learn complex patterns and adapt to changing
conditions without relying on rigid assumptions. Supervised
learning models, such as Random Forests and XGBoost,
handle tabular data effectively while providing feature im-
portance insights. Neural networks, including LSTMs, excel
at capturing temporal dependencies in time-series data. Fur-
thermore, techniques like transfer learning and reinforcement
learning enable models to generalize across diverse scenarios
and optimize real-time decision-making. The versatility and
scalability of ML make it a preferred approach for robust QoS
prediction in dynamic vehicular networks.

III. DATA COLLECTION AND PREPARATION

Data Collection and Preparation: For training AI models
for QoS prediction, high-resolution datasets such as the Berlin
V2X dataset are indispensable. This dataset provides extensive
information, including primary and secondary cell metrics,
GPS data, environmental factors, and operator information,
making it well-suited for tasks like downlink throughput
prediction. Additional data from controlled measurement cam-
paigns, such as those conducted in test networks or motorway
environments, can further enhance model robustness and gen-
eralizability.

Dataset Segregation: To facilitate analysis, we separated
the dataset into two distinct subsets:

o P-Cell Only Dataset: This subset contains entries where
secondary cell (SCell) data is absent. These scenarios
often occur in areas with limited network infrastructure
or where carrier aggregation is not active.

e P-Cell + S-Cell Dataset: This subset includes entries
with both primary (PCell) and secondary (SCell) data.
The presence of SCell metrics indicates scenarios with



active carrier aggregation, typically observed in high-
demand environments or regions with strong network
coverage.

Reasoning: This segregation was performed to evaluate the
distinct impact of carrier aggregation on QoS prediction. The
P-Cell Only dataset allows us to analyze the network’s baseline
performance, while the P-Cell + S-Cell dataset highlights the
enhancements achieved through carrier aggregation. Such sep-
aration is crucial for understanding the varying contributions
of network configurations and ensuring that the models are
accurately tailored to different operational conditions.

Data Preprocessing: Preprocessing steps were essential to
prepare the datasets for effective model training. These steps
included:

o Feature Selection: Selecting relevant features, such as
signal quality metrics (RSRP, SINR), environmental pa-
rameters (traffic conditions, weather), and location data
(GPS coordinates), to ensure model inputs are meaningful
and concise.

o Normalization: Scaling features to ensure uniformity
and prevent dominance of features with larger numerical
ranges during model training.

o Handling Missing Values: Employing strategies like
imputation or removal to address missing data points,
ensuring data quality and consistency.

By carefully organizing and preprocessing the data, we
ensured that the models could effectively learn from and
generalize across the diverse conditions represented in the
dataset.

A. Why Al Solutions Address the Issues in Traditional Meth-
ods

While traditional approaches like signal propagation mod-
els, network simulations, and empirical measurements provide
foundational insights into QoS prediction, their limitations
in dynamic vehicular environments highlight the need for
Al-driven solutions. In this subsection, we discuss how Al
methods overcome these challenges and address the trade-offs
associated with their use.

1. Adaptability to Dynamic Environments: Traditional
methods, such as signal propagation models and network sim-
ulations, rely on predefined rules or scenarios, making them
ill-suited for handling the highly dynamic and unpredictable
nature of vehicular networks. In contrast, AI models excel at:

o Learning from diverse datasets that include real-world
variations (e.g., urban, rural, high-speed).

« Adapting to unseen scenarios by capturing complex pat-
terns and relationships in the data.

Trade-off: AI models require a sufficiently large and represen-
tative dataset to generalize well. However, once trained, these
models dynamically adapt to changes in the environment with
far less recalibration than traditional approaches.

2. Handling Non-Linear Interactions: High-mobility ve-
hicular networks involve non-linear interactions between vari-
ables like signal strength, interference, and vehicle velocity.

While traditional methods (e.g., Kalman filters or ARIMA)
fail to capture these complexities, Al-based approaches, par-
ticularly deep learning, are designed to:

e Model non-linear relationships effectively using neural
network architectures.

o Incorporate sequential patterns through models like
LSTMs and Transformers, which are ideal for time-series
data.

Trade-off: Deep learning solutions are computationally in-
tensive during training, but their ability to reduce prediction
error significantly justifies the investment in scenarios where
accuracy is critical.

3. Resource Efficiency in Real-Time Prediction: Although
traditional network simulations are resource-intensive, they
primarily provide insights for fixed scenarios and cannot
generalize to real-time environments. Al solutions address this
by:

« Shifting computational cost to the training phase, allow-

ing for fast and efficient real-time inference.

o Leveraging lightweight deployment options like Tensor-
Flow Lite for edge devices, enabling predictions directly
within vehicles or edge nodes.

Trade-off: While training Al models can be resource-heavy,
they deliver near-instantaneous predictions post-training, mak-
ing them more practical for real-time vehicular applications
compared to recalibrating traditional simulations repeatedly.

4. Scalability Across Diverse Scenarios: Traditional meth-
ods require significant recalibration to account for new en-
vironments (e.g., urban vs. highway scenarios). Al models
overcome this by:

o Using transfer learning to adapt pre-trained models to

new datasets with minimal effort.

o Generalizing well across diverse conditions, provided the
training dataset is representative.

Trade-off: AI models depend heavily on the quality and
diversity of training data. Poorly curated datasets may lead
to overfitting or biased predictions, but this can be mitigated
with proper data preprocessing and augmentation techniques.

5. Improved Accuracy and Predictive Power: The pri-
mary advantage of Al solutions lies in their predictive accu-
racy. Compared to empirical models or time-series methods,
Al approaches can:

o Achieve significantly lower error rates by leveraging
advanced architectures like XGBoost, LSTMs, and Trans-
formers.

o Incorporate a broader range of features, such as SINR,
RSRP, and trajectory data, to improve QoS predictions.

Trade-off: While the accuracy gain is substantial, it may
not always justify the computational overhead for less crit-
ical applications. However, in safety-critical scenarios like
autonomous driving, the accuracy gain outweighs the cost.

6. Flexibility for Continuous Learning: AI solutions
allow for incremental updates through continuous learning
techniques. Unlike traditional methods that require manual
recalibration, Al models can:



« Retrain periodically with new data to account for chang-
ing network conditions.

o Employ online learning for real-time adaptation in dy-
namic environments.

Trade-off: Continuous learning increases operational com-
plexity, requiring periodic data collection and monitoring
pipelines. However, this ensures the models remain robust and
up-to-date.

Conclusion: While Al solutions come with their own
resource requirements, the trade-off is clear: they provide
adaptability, scalability, and significantly improved accuracy
in dynamic vehicular environments. For applications like au-
tonomous driving, where QoS predictions are safety-critical,
the advantages of Al outweigh the costs. By leveraging Al
models, we achieve not only better predictions but also the
flexibility to deploy these solutions in real-world vehicular
networks effectively.

Al-based solutions offer a more flexible and adaptive ap-
proach to QoS prediction in vehicular networks, with the po-
tential to make real-time adjustments and proactive decisions.
These models are better suited for the dynamic, high-mobility
environments encountered in vehicular communications, offer-
ing improvements in accuracy and reliability over traditional
methods.

IV. NETWORK DESCRIPTION

In this study, we assume a network environment based
on LTE cellular infrastructure operating in a metropolitan
area. The dataset contains measurements from primary and
secondary cells of two commercial LTE operators in Berlin.
Each vehicle in the dataset serves as a user equipment (UE)
connected to the network, collecting information about down-
link quality metrics such as signal strength, signal-to-noise
ratio (SNR), and received signal strength indicator (RSSI),
among others. These metrics are recorded along with GPS
coordinates, environmental factors, and traffic data, allowing
us to analyze network quality under varying conditions.

A. Primary and Secondary Cells in LTE Networks

In Long-Term Evolution (LTE) networks, carrier aggrega-
tion is a key feature designed to enhance network through-
put and reliability by combining multiple frequency bands.
This process involves the use of Primary Cells (PCell) and
Secondary Cells (SCell), which together form a more robust
communication channel.

Primary Cell (PCell):

o The PCell is the main connection point between the user
equipment and the LTE network.

o It operates on the primary carrier frequency and handles
critical control plane functions, such as authentication,
mobility management, and signaling.

o The PCell is always active and is responsible for es-
tablishing and maintaining the initial connection when
a device enters the network or moves between cells.

o This connection ensures the baseline level of communi-
cation required for reliable data exchange, even in the
absence of secondary cells.

Secondary Cell (SCell):

o The SCell is an auxiliary connection that operates on
additional carrier frequencies. It is dynamically added or
removed based on network conditions, user demand, and
device capabilities.

¢ SCells are primarily used to enhance data throughput by
offloading traffic from the PCell and providing additional
bandwidth.

o Unlike the PCell, the SCell may not be continuously ac-
tive and does not typically handle control plane signaling.
Its role is focused on the user plane, contributing directly
to data transmission. This feature of Scell is the reason
we have so much missing data in our Berlin V2X dataset.

Interaction Between PCell and SCell:

o Together, the PCell and SCell enable carrier aggregation,
which is crucial for meeting the high data rate demands
of modern applications.

o The PCell serves as the anchor, managing critical network
tasks, while the SCell supplements it with additional
resources, thereby boosting the overall network capacity
and reliability.

o Carrier aggregation is especially beneficial in scenarios
with high data traffic, such as streaming video, real-time
gaming, or handling multiple simultaneous connections.

B. Network Environment and Impact on Performance

The environment in which the PCell and SCell operate
significantly impacts their performance. LTE networks are
characterized by:

« High Mobility: Vehicles traveling at varying speeds lead
to frequent transitions between cells, known as “han-
dovers”. Effective coordination between PCell and SCell
is crucial to maintaining seamless connectivity during
these transitions.

o Frequent Cell Handovers: As the user equipment moves
across geographical regions, the network dynamically
assigns new PCells and SCells to ensure optimal per-
formance.

o Diverse Geographical Locations:

— Urban Areas: High building density causes signal
reflections and obstructions, impacting both PCell
and SCell connections.

— Highways: High mobility introduces challenges in
maintaining consistent connections, but fewer ob-
structions allow for better line-of-sight communica-
tion.

— Tunnels: Signal degradation and limited coverage in
enclosed spaces make carrier aggregation critical for
maintaining communication.

Conclusion: The combined functionality of PCell and SCell
ensures both reliability and high throughput in LTE networks,



particularly in challenging environments with diverse geo-
graphical and mobility conditions. By leveraging carrier aggre-
gation, LTE networks can provide seamless communication,
even in scenarios with high mobility and complex physical
conditions.

V. LITERATURE REVIEW

A. Berlin V2X: A Machine Learning Dataset from Multiple
Vehicles and Radio Access Technologies

One of the key references for this project is the paper titled
”Berlin V2X: A Machine Learning Dataset from Multiple
Vehicles and Radio Access Technologies,” which introduces
the Berlin V2X dataset. This dataset provides high-resolution
measurements of QoS metrics collected across various envi-
ronments in Berlin, including avenues, parks, highways, resi-
dential streets, and tunnels. The dataset encompasses features
from LTE networks across two operators, capturing signal
strength, SNR, RSRP, RSRQ, and downlink throughput for
both primary and secondary cells.

The paper highlights the challenges and opportunities asso-
ciated with applying machine learning for QoS prediction in a
vehicular setting, where high mobility and diverse conditions
impact network performance. The authors also present prelim-
inary analyses, including correlation patterns across different
geographical areas and network conditions, demonstrating the
dataset’s suitability for QoS prediction tasks. This dataset,
therefore, provides a foundational resource for developing pre-
dictive models that generalize across different LTE operators
and environments.

B. QoS Prediction in Radio Vehicular Environments via Prior
User Information

Another relevant paper is titled ”QoS Prediction in Radio
Vehicular Environments via Prior User Information,” which
explores the concept of predictive QoS (pQoS) in vehicular
networks. This study emphasizes the importance of reliable
QoS for emerging vehicular use cases such as connected au-
tonomous driving, platooning, and teleoperated driving, which
rely on uninterrupted connectivity. To address the challenge
of fluctuating QoS in high-mobility environments, the authors
evaluate machine learning tree-ensemble methods for QoS
prediction, using data from the Al4Mobile measurement cam-
paign on the A9 Motorway in Germany.

The study proposes using information from prior vehicles
to enhance the QoS prediction accuracy for target vehicles.
By leveraging the correlations between the radio environment
characteristics experienced by preceding vehicles, the model
improves its predictive performance for vehicles following the
same route. The authors demonstrate that including features
from leading vehicles’ physical (PHY) layer measurements,
such as SNR, RSRP, and RSSI, significantly reduces prediction
error, especially over longer look-ahead times.

C. Predictive QoS (PQoS): The Next Frontier for Fully Au-
tonomous Systems

The paper titled ”Predictive QoS (PQoS): The Next Frontier
for Fully Autonomous Systems” discusses the role of predictive

QoS (PQoS) in ensuring reliable and efficient communication
in autonomous and vehicular systems. PQoS enables proactive
adaptation to network changes by predicting QoS metrics like
throughput and latency, thereby ensuring continuous operation
for critical use cases such as teleoperated driving, autonomous
platooning, and high-definition map sharing.

The authors highlight how machine learning, particularly
deep neural networks (DNNs), can significantly improve pre-
diction accuracy compared to traditional methods like linear
regression. A case study demonstrates that SINR (Signal-
to-Interference-plus-Noise Ratio) is a dominant feature for
throughput prediction, achieving error rates as low as 4%. The
paper also explores the use of transfer learning to adapt pre-
trained models to new environments, emphasizing the potential
for scalable, location-agnostic implementations.

These insights can be applied to this project by leveraging
SINR as a key feature in machine learning models and
exploring transfer learning for adapting predictions to diverse
geographical regions and vehicular scenarios. This proactive
approach can mitigate connectivity disruptions and improve
QoS reliability in dynamic network environments.

VI. MY APPROACH

To tackle the problem of predicting QoS (Quality of Ser-
vice) in vehicular networks, I have developed a structured
approach involving data understanding, feature engineering,
model selection, training, and evaluation. This section details
the methodology and justifies the chosen techniques, models,
and dataset.

A. Understanding the Dataset

The dataset utilized in this study is derived from real-world
vehicular environments, capturing a wide range of network and
environmental metrics essential for Quality of Service (QoS)
prediction. The key features include:

o Downlink Throughput: The target metric representing
the quality of communication, indicative of the data rate
achievable at the receiver.

« Signal-to-Interference-plus-Noise Ratio (SINR): A
measure of signal quality relative to background noise
and interference, crucial for assessing network reliability
and performance.

+ Reference Signal Received Power (RSRP): Represents
the average received power of the reference signals,
providing insights into signal strength at the receiver.

« Reference Signal Received Quality (RSRQ): Captures
the quality of the received reference signal, complement-
ing RSRP to provide a holistic view of signal conditions.

« Uplink Resource Block Usage (RB Usage): Indicates
network resource utilization, reflecting the load on the
uplink channel.

o Environmental Parameters: Features such as traffic
congestion levels, weather conditions (e.g., cloud cover,
visibility), and time-of-day to contextualize variations in
network performance.



Distribution of Hours for June 22nd

3500

3000

2500

2000

Frequency

1500

1000

500

10 1 12 13 14
Hour of the Day

Distribution of Hours for June 24th

Frequency
g
8
s

2000

1000

13 14 15 16 17
Hour of the Day

Fig. 1. Data Distribution Across Hours for June 22nd and June 24th

o Location Data: Comprises longitude, latitude, and alti-
tude, enabling spatial mapping of network variations and
signal coverage.

« Vehicle Velocity: Represents the speed of the vehicle,
capturing the dynamic mobility aspects that influence
network behavior and QoS.

o Primary and Secondary Cell Metrics: Metrics from
both primary (PCell) and secondary (SCell) cells, includ-
ing carrier aggregation states, to study their individual
and combined impact on network performance.

B. Understanding Timestamps and Data Collection

The dataset spans only two days, specifically June 22nd
and June 24th. This limited timeframe necessitated careful
handling of the data to ensure meaningful training and testing
splits.

Figure 1 illustrates the distribution of data samples collected
over the two days, grouped by hour. The data collection pattern
shows that certain hours have significantly higher coverage,
which allowed for informed decisions about splitting training
and testing datasets while maintaining the temporal integrity
of the data.

C. Feature Engineering

Feature engineering is a critical step to enhance the pre-
dictive power of machine learning models by refining and
selecting the most relevant features. The following steps were
undertaken:

o Correlation Analysis and Feature Selection: A cor-
relation heatmap was generated to analyze the relation-
ships between features and the target variable (downlink
throughput). Features with very low correlation to the
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Fig. 2. Correlation Heatmap for Feature Selection.

target were removed to simplify the model and reduce
noise. The features removed included:

Humidity: Correlation = 0.230256
Timestamp: Correlation = 0.200607
Dew Point: Correlation = -0.244297
Temperature: Correlation = -0.248663
Visibility: Correlation = NaN

Features such as SINR, RSRP, downlink resource block
usage, and location coordinates were retained due to their
higher correlation and relevance to QoS prediction.

o Categorical Encoding: To enable machine learning al-
gorithms to process categorical data effectively:

— Device: Device IDs were one-hot encoded.

— Operator: The operator identifier (1 or 2) was one-
hot encoded to represent the network operator.

— Area Type: Categories such as residential, park, and
work were also one-hot encoded to indicate the type
of environment.

o Timestamp Processing: Timestamps were converted into
datetime format to facilitate temporal analysis and
ensure compatibility with downstream processing steps.
This also allowed better separation of training and testing
data based on time.

o Handling Missing or Noisy Data: Missing values in
the dataset were handled using appropriate imputation
techniques to maintain data consistency. Outliers were
identified and removed to ensure model stability and
avoid skewing predictions.

o Derived Features: Additional features were derived to
enhance the model’s predictive capabilities:

— Normalized Features: SINR and RSRP values were
normalized to ensure comparability across different
scales.
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D. Model Selection and Justification

Given the dataset’s structure and problem complexity, I will
use a combination of traditional tree-based models and neural
network-based approaches:

E. Modeling Approaches

In this study, we explored two key modeling approaches for
Quality of Service (QoS) prediction:

o ARIMA (AutoRegressive Integrated Moving Aver-
age):

— Description: ARIMA is a traditional time-series
forecasting method that models temporal dependen-
cies by combining auto-regression, differencing, and
moving averages to capture linear patterns in sequen-
tial data.

— Performance: Despite extensive tuning, ARIMA
performed poorly in this study, with a Mean Absolute
Percentage Error (MAPE) of 54.43% and an R?
score of -0.4944. These metrics indicate significant
inaccuracies, likely due to the limited range of data
available (only two days), which constrained the
model’s ability to detect meaningful trends. Given
these results, ARIMA was deemed unsuitable for
this analysis, emphasizing the need for alternative
approaches.

o XGBoost (Extreme Gradient Boosting):

— Description: XGBoost is a highly efficient tree-
based ensemble learning algorithm specifically de-
signed for tabular data. It uses gradient boosting
frameworks to optimize predictions by iteratively
improving weak learners (decision trees).

— Advantages:

* Handles missing values natively.

* Strong regularization techniques prevent overfit-
ting.

* Fast training times and interpretable results make
it ideal for medium-sized datasets.

— Performance: XGBoost outperformed ARIMA in
this study, demonstrating its suitability for the tab-
ular and multi-dimensional nature of the dataset.
Its ability to handle non-linear relationships and
interactions between features made it a robust choice
for predicting downlink throughput.

— Final Decision: Based on its superior performance
and compatibility with the dataset, XGBoost was
selected as the primary modeling approach for this
project.

A hybrid approach may also be explored by combining the
strengths of both techniques to achieve better performance.

F. Model Training and Evaluation

The training and evaluation process in this study was metic-
ulously designed to ensure robust model performance while
addressing the unique challenges of predicting Quality of
Service (QoS) in a vehicular communication scenario. Below,
we detail the methodologies employed, the rationale behind
key decisions, and the insights derived from the evaluation
process.

G. Data Splits and Evaluation Metrics

To evaluate model performance under varying conditions,
we experimented with different training and testing periods
using timestamps spanning two days of data collection. Specif-
ically, data from the first day (June 22nd) provided a 9-hour
training window, while the second day (June 24th) offered a
4-hour testing window.

o Testing Data: Data from June 24th, after the cutoff time
(1:00 PM to 4:00 PM), was reserved for testing. This
temporal split simulated a real-world scenario where the
model predicts future QoS conditions based on past data.

o Tradeoff in Testing Duration: Initially, multiple config-
urations were tested with varying durations for training
and testing:

— Longer testing windows (e.g., 6 hours) provided
more data but reduced accuracy due to greater vari-
ability in network conditions.

— Shorter testing windows (e.g., 1 hour) improved
accuracy but offered less insight into model general-
izability.

o Final Configuration: A 3-hour testing window was
selected as a balance between accuracy and representa-
tiveness. This duration allowed us to evaluate model per-
formance across meaningful variations in QoS conditions
while maintaining high prediction accuracy.

| | Training Hours | Testing Hours | P-Cell R% | P+S-Cell R?
i__é_i 9 (bay 1) i 0 (Day 2) i 0.708 i 0.7583
| 119 (pay 1) + 1 (Day 2) | 3 (Day 2) | 0.708 | 0.7583
| 2] 9 (pay 1) + 2 (Day 2) | 2 (Day 2) | 0.7932 | 0.7292

0.8203 | 0.8431

| 3] 9 (pay 1) + 3 (Day 2) | 1 (Day 2) |

Fig. 3. Training and Testing Splits with Evaluation Metrics

H. Sliding Window Analysis

To assess the consistency of the model across different
timeframes, we implemented a sliding window analysis:

« Rationale: Sliding windows were employed to exam-
ine how model performance varied when trained and
tested on different temporal segments of the dataset.
This approach helped us understand whether the model’s
predictions were stable or heavily dependent on specific
time periods.

« Methodology:



— Training and testing windows were shifted incremen-
tally, covering different hours on June 22nd and 24th.

— For each window, the model was trained on a se-
lected set of hours and tested on subsequent hours.

— Metrics such as Mean Squared Error (MSE) were
recorded for each window.

o Results: The sliding window analysis revealed notable
variability in model performance:

— Windows trained on early morning hours tended to
perform worse on testing data from the afternoon,
likely due to changing traffic patterns and environ-
mental conditions.

— Conversely, models trained on afternoon hours
showed better performance on testing windows
closer in time, reflecting the temporal dependence
of network dynamics.

« Graphical Representation: A graph of sliding windows
versus MSE is included in Figure 4, illustrating the
variation in error across different windows.
Interpretation: The variability in performance was ex-
pected due to the limited dataset and the inherent dif-
ferences in network behavior during different hours. In
larger datasets spanning multiple days or weeks, sliding
window analysis could be leveraged to train models that
adapt to specific temporal patterns, improving overall
performance.
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Fig. 4. Mean Squared Error (MSE) across Sliding Windows

1. Feature Importance

Understanding feature importance is crucial for interpreting
the model’s decision-making process and identifying the most
influential variables for predicting downlink throughput. The
feature importance analysis for both models, P-Cell-Only and
P-Cell + S-Cell, provides valuable insights into the key drivers
of network performance.

1) Top Features for Each Model: The top 5 most important

features for each model are summarized below:

o P-Cell-Only Model:
— PCell_SNR_max: Signal-to-Noise Ratio of the pri-
mary cell.

Features

Features
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Fig. 5. Feature Importance for P-Cell-Only Model.

Feature Importance (P-Cell + S-Cell Model)
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Fig. 6. Feature Importance for P-Cell + S-Cell Model.

— PCell_Downlink_Num_RBs: Number of resource
blocks used for the downlink in the primary cell.

— PCell_Downlink_Average MCS: Average modula-
tion and coding scheme used for the primary cell’s
downlink.

— COG: Course over ground, which captures vehicle
direction.

— PCell_RSRP_max: Maximum
power for the primary cell.

e P-Cell + S-Cell Model:

— SCell_SNR_max: Signal-to-Noise Ratio of the sec-
ondary cell.

— SCell_Downlink_Num_RBs: Number of resource
blocks used for the downlink in the secondary cell.

— SCell_Downlink_Average_MCS: Average modula-
tion and coding scheme for the secondary cell’s
downlink.

— PCell_SNR_max: Signal-to-Noise Ratio of the pri-
mary cell.

— PCell_Downlink_Num_RBs: Number of resource
blocks used for the primary cell’s downlink.

received  signal
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Fig. 7. Residuals Plot for (a) P-Cell-Only Model (Top) and (b) P-Cell +
S-Cell Model (Bottom).

2) Evaluation Metrics: Model performance was evaluated
using a combination of metrics and visualizations to capture
various aspects of prediction accuracy:

e Mean Squared Error (MSE): Measures the average
squared difference between predicted and actual values.
Lower MSE indicates better accuracy.

« Root Mean Squared Error (RMSE): Provides a more
interpretable measure of error in the same units as the
target variable. It penalizes larger errors more heavily.

o Mean Absolute Percentage Error (MAPE): Quantifies
the prediction error as a percentage, offering a normalized
measure of accuracy.

o Coefficient of Determination (R?): Indicates the pro-
portion of variance in the target variable explained by
the model. Higher R? values signify better model fit.

To complement the quantitative evaluation metrics, the
following visualizations are included:

o Residuals plot for the P-Cell-Only and P-Cell + S-Cell

models.

o Predicted vs. Actual values plot for both models.

VII. CONCLUSION

In this report, we explore the challenge of predicting Qual-
ity of Service (QoS) in vehicular networks using advanced
machine learning techniques. The Berlin V2X dataset, which
includes LTE metrics, GPS data, environmental factors, and
network characteristics, provided a comprehensive resource
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Fig. 8. Predicted vs. Actual Plot for (a) P-Cell-Only Model (Top) and (b)
P-Cell + S-Cell Model (Bottom).

for understanding network performance in dynamic vehicular
environments.

Our experiments demonstrated that by leveraging key fea-
tures such as PCell SNR, PCell Downlink RBs, PCell
Downlink Average MCS, COG, and area type, we could
achieve a predictive accuracy of approximately 71% for P-
Cell-Only data and 76% for P-Cell + S-Cell data when
using XGBoost. This was achieved using only 10 hours of
training data to predict network throughput for the next 2
hours. The relatively high performance within this limited data
range suggests that the model is well suited for learning tem-
poral and spatial patterns inherent to vehicular communication
environments.

This performance is significant, considering the small size
of the data set and the limited temporal coverage. It indicates
that models trained on larger datasets that span multiple days
or diverse geographic regions could potentially exhibit even
greater precision by capturing a wider variety of patterns in
vehicular communication.

VIII. FUTURE SCOPE

The application of Al-based QoS prediction in vehicular
networks holds immense promise, particularly for use cases
such as:

o Fleet Coordination: Reliable QoS predictions can enable

smoother communication between vehicles in a fleet,
ensuring consistent connectivity for shared data.



o Proactive Route Planning: Predicting network perfor-
mance along different routes allows vehicles to adjust
paths to maintain uninterrupted connectivity during criti-
cal tasks, such as package delivery or logistics operations.

« Teleoperated Driving and Remote Assistance: Vehicles
requiring remote intervention can benefit from robust QoS
predictions to ensure seamless real-time communication.

A. Opportunities for Larger Datasets

Expanding the dataset to cover longer durations and diverse
regions could significantly enhance the model’s robustness. A
data set with weeks or months of data would allow the model
to:

o Identify Long-Term Trends: Capture seasonal and day-
to-day variations in network conditions.

o Optimize for Temporal Patterns: Learn repetitive pat-
terns in traffic and network behavior, improving predic-
tions during rush hours or special events.

B. Global Optimization through Transfer Learning

Transfer learning offers an opportunity to adapt pre-trained
models to new regions, reducing the computational burden of
training from scratch. Key advantages include:

o Localized Fine-Tuning: Adjusting models for region-
specific features like traffic density, environmental fac-
tors, and road layouts.

o Cross-Regional Collaboration: Sharing datasets and in-
sights across regions to create more versatile models.

o Synthetic Data Augmentation: Using Al-generated data
to supplement training for underrepresented regions.

However, challenges such as variability in traffic patterns
and environmental conditions across regions must be ad-
dressed to achieve robust, globally deployable models.

IX. LIMITATIONS

Despite the promising results, certain limitations must be
acknowledged:

« Limited Dataset Scope: The dataset only spans two days,
making it challenging to generalize the findings on larger
temporal scales.

« Regional Variability: Different regions exhibit distinct
traffic patterns, environmental conditions, and network
infrastructure, making it difficult to generalize the model
to new areas without additional data.

o Real-Time Constraints: The computational require-
ments of real-time QoS prediction may increase signifi-
cantly with larger data sets or more complex models.

X. FINAL THOUGHTS

This study highlights the potential of machine learning for
QoS prediction in vehicular networks, even with a limited
dataset. The ability to predict network throughput with 71%
and 76% accuracy for P-Cell-Only and P-Cell + S-Cell data,
respectively, using just 10 hours of training data, is a promising
outcome.

The feature importance analysis provided valuable insights
into the key drivers of network performance. Features such as
SNR (Signal-to-Noise Ratio), Downlink Resource Blocks,
and Average Modulation and Coding Scheme (MCS) for
both primary and secondary cells were identified as significant
contributors to accurate throughput predictions. These insights
can guide network optimization strategies by focusing on
metrics that have the greatest impact on QoS.

With larger datasets, global optimization techniques, and
region-specific fine-tuning, these models could play a pivotal
role in enabling reliable and scalable QoS prediction systems
for future vehicular networks.
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